Home » Problem of the Month – March 2019

Problem of the Month – March 2019

Find the minimal possible value of ab + bc + ac over all positive numbers a, b, c satisfying
abc = 1, a + b + c = 5 and
(ab + 2a + 2b − 9)(bc + 2b + 2c − 9)(ca + 2c + 2a − 9) ≥ 0.

 

Correct Solutions by,

  • Toshihiro Shimizu Kawasaki, Japan
  • Vedat Deveci Istanbul
  • Ensar Göktekin Malatya Anadolu Lisesi
  • Hasan Zübeyr Demir Özel Ankara Çağlayan Fen Lisesi
  • Shin Min Hyeok Geoje Island, South Korea
  • M. Lütfi Yarar İstanbul Technical University
  • Albert Stadler Herrliberg, Switzerland
  • Roushen Ovezmuradov Ashgabat, Turkmenistan
  • Osman Asil Ege University, İzmir
  • Muhammet Habip Bingöl İstanbul University
  • Sten Hemmingsson Lund, Sweden
  • Asude Ebrar Kızıloğlu Özel Kadıköy Eğitmen Fen ve Anadolu Lisesi, İstanbul
  • İrem Nur Çevikcan Buca Tırnaklı Fen Lisesi, İzmir
  • Sude Filiz İzmir Bilfen Fen Lisesi
  • Feray Lina Yence Buca Tırnaklı Fen Lisesi, İzmir
  • Mahmut Sait Okyay UNIST, South Korea
  • Berkay Unlu Dokuz Eylül University, İzmir
  • Max Nilsson Lund, Sweden
  • Oktay Balkış Aksaray Abdülhamid Han Fen Lisesi
  • Animoku Abdulwahab Abuja, Nigeria
  • Paolo Perfetti Universite degli studi di Tor Vergata Roma, Italy
  • Henrik Aberg Gothenburg, Sweden
  • Magnus Jakobsson Lund, Sweden
  • Abdulkadir Tanrıverdi Eskişehir
  • Vanio Beccaccioli Terni, Italy
  • Roger Bengtsson Lund, Sweden
  • Bülent Doğru Eskişehir
  • Johan Sandell Lund, Sweden
  • Eren Can Kızıldağ Massachusetts Insıtute of Technology, USA
  • Dovran Nurgeldiyev Magtumguly Turkmen State University, Turkmenistan
  • Metin Can Aydemir Bilkent University
  • Berkay Kırali
  • Mustafa Serdar İpek Üsküdar, Istanbul
  • Alper Bahcekapılı Evrensel Fen Lisesi, Ankara
  • Tuğşad Koyuncu Fethiye Ömer Özyer Fen Lisesi
  • Allan Druze Gulf Stream School Florida, USA