Home » Problem of the Month – July, August 2020

Problem of the Month – July, August 2020

Let A1A2A3A4 be a circumscribed quadrilateral with the perimeter p1 and with the sum of
its diagonals k1 and let B1B2B3B4 be a circumscribed quadrilateral with the perimeter p2
and with the sum of its diagonals k2. Given

p1p2= (k1 + k2)

prove that A1A2A3A4 and B1B2B3B4 are congruent squares.

 

Correct Solutions by,

  • Toshihiro Shimizu, Kawasaki, Japan
  • Haruhisa   Oda, University of Tokyo, Japan
  • Alper Balcı, METU
  • Mehmet Özgün Cihangir, METU
  • Roger Bengtsson, Lund, Sweden
  • Emirhan Yağcıoğlu, Özel Ankara Matematik ve Fen Bilimleri Anadolu Lisesi
  • Vedat Deveci, İstanbul
  • İbrahim Berkay Ceylan, Giresun Fen Lisesi
  • Chui Tsz Fung, Hong Kong
  • Kadyr Annabayev, Turkmen State Institute of Arhcitecture and Construction,  Aşkabat
  • Ahmed Said Gençkol, Ankara Atatürk Anadolu Lisesi
  • Mehmet Koca, Denizli Koleji

Solution: http://www.fen.bilkent.edu.tr/~cvmath/Problem/2008a.pdf