Let A1A2A3A4 be a circumscribed quadrilateral with the perimeter p1 and with the sum of
its diagonals k1 and let B1B2B3B4 be a circumscribed quadrilateral with the perimeter p2
and with the sum of its diagonals k2. Given
p12 + p22 = (k1 + k2)2
prove that A1A2A3A4 and B1B2B3B4 are congruent squares.
Correct Solutions by,
- Toshihiro Shimizu, Kawasaki, Japan
- Haruhisa Oda, University of Tokyo, Japan
- Alper Balcı, METU
- Mehmet Özgün Cihangir, METU
- Roger Bengtsson, Lund, Sweden
- Emirhan Yağcıoğlu, Özel Ankara Matematik ve Fen Bilimleri Anadolu Lisesi
- Vedat Deveci, İstanbul
- İbrahim Berkay Ceylan, Giresun Fen Lisesi
- Chui Tsz Fung, Hong Kong
- Kadyr Annabayev, Turkmen State Institute of Arhcitecture and Construction, Aşkabat
- Ahmed Said Gençkol, Ankara Atatürk Anadolu Lisesi
- Mehmet Koca, Denizli Koleji
Solution: http://www.fen.bilkent.edu.tr/~cvmath/Problem/2008a.pdf