Let P(x) be a non-constant polynomial with real coefficients such that all of its roots are
real numbers. Suppose that there exists a polynomial Q(x) with real coefficients such
that
(P(x))2 = P(Q(x))
for all real numbers x. Determine the maximal possible number of distinct roots of P(x).
Correct Solutions by,
- Toshihiro Shimizu Kawasaki, Japan
- Steffen Weber Ismanıng, Germany
- Max Nilsson Lund, Sweden
- Bora Ege Duygun Bilkent University
- Vedat Deveci İstanbul
- Mehmet Yeni Tarsus, Mersin
- Halil Özkan Denizli Özel Denizli Koleji, Denizli
- Serdar Hojayev Dashoguz, Turkmenistan
- Halil Alperen Gözeten Denizli Özel Denizli Koleji, Denizli
- Demir Eken Bilkent University
- Bilge Köksal Bilkent University
- Ozan Kaymak Denizli Özel Denizli Koleji, Denizli
- Roger Bengtsson Lund, Sweden
- Hakan Karakuş Antalya Yusuf Ziya Öner Fen Lisesi
- Ömer Topaloğlu Özel İzmir Fen Lisesi, İzmir
- Mustafa Emir Çelebi İstanbul Lisesi
- İbrahim Suat Evren Denizli Özel Denizli Koleji, Denizli
- Enes Özdemir Buca İnci Özer Tırnaklı Fen Lisesi, İzmir
- John Wright Brooklyn, New York, USA
- Jürgen Weith University of Applied Sciences, Schweinfurt, Germany
Solution: http://www.fen.bilkent.edu.tr/~cvmath/Problem/1906a.pdf