Academic Integrity Guidelines for Students

Students need to comprehend that learning takes place only when they actually do their own assignments and projects as opposed to resorting to plagiarism and cheating. Moreover, passing courses in this manner will only harm their future academic performance and their careers after graduating.

In terms of Bilkent University policies, the university defines academic integrity in its Academic Policies and Documents [1]. The preamble of the policy on academic integrity expressly states “Bilkent University is committed to fundamental values necessary to research, academic excellence, the pursuit of learning, and a culture of integrity. These include honesty, trust, fairness, respect, and responsibility among all members of the University community.” The policy “strongly encourages” students, among all other members of the Bilkent community, to “embrace these values in pursuit of these shared goals.” The policy “prohibits acts of misconduct and academic dishonesty”. These acts include but are not limited to “acts of cheating, plagiarism and falsification of data”.

Using examples, these guidelines document how Bilkent University defines academic integrity for students and draws on the structures of similar documents on the subject from various institutions [2-5].

1. Definitions

In light of its commitment to academic integrity, Bilkent University prohibits acts of misconduct and academic dishonesty. This section defines potential violations by students regarding academic integrity. These include, but are not limited to, the following acts.

1.1 Unauthorized help

A student giving or receiving unauthorized help for an assignment from another student or person, including any commercial or non-commercial agent, is considered an academic honesty violation.

1.2 Multiple submissions

 Submitting a substantial part of the same work (written or verbal) more than once without the authorization of the responsible teaching staff is a type of misconduct.

1.3 Plagiarism

Plagiarism is defined as improperly incorporating the work or ideas of others into one’s own work. Please see examples below for various types of plagiarism.

1.4 Falsification, forgery and fabrication

Falsifying, forgery or fabrication of any information, document or alike, such as class records, is a violation of academic honesty. Examples include forgery or fabrication of health records, signing attendance sheets for someone else, and fabrication of experiment or study results.

1 These guidelines draw on the report titled “Improving Student Academic Integrity at Bilkent University” prepared earlier on by the Student Academic Integrity Committee composed of H. Tolga Bollukbasi (POLS), Uğur Doğruluz (CS) - Chair.
1.5 Failure to report misconduct
A student who knows about or suspects an action constituting academic misconduct and does not report it to the responsible teaching staff violates academic honesty.

2. Examples of plagiarism
The most basic form of plagiarism is incorporation of your own or someone else's work without referencing its source. Below is an example.

Original text
"An SBGN-PD map represents all the molecular processes and interactions taking place between biochemical entities, and their results. The underlying representation is essentially a bipartite compound graph." (B. Genc, U. Dogrusoz, "An Algorithm for Automated Layout of Process Description Maps Drawn In SBGN", BioInformatics, 32(1), pp. 77-84, 2016)

Plagiarism
SBGN-PD maps represent the molecular processes and interactions between biochemical entities, and results of these. Such maps can be essentially represented as a bipartite compound graph.

Why is this plagiarism
The author does not reference the source of information here at all. Even when the source is listed in the bibliography, the author is required to reference the source properly for each use of the source within the text.

Proper referencing
SBGN-PD maps represent the molecular processes and interactions between biochemical entities, and results of these. Such maps can be essentially represented as a bipartite compound graph (Genc and Dogrusoz, 2018).

Why is this acceptable
The author properly cites the source at the time of its use.

In what follows, we provide examples for more specific types of plagiarism.

2.1 Examples of paraphrasing
The following are examples from various disciplines on how to properly paraphrase the work of others as well as the failure to do so, which constitutes plagiarism.

Original text
"... modern and formal centers of growth have simultaneously created and sustained fragmented informal bases. In Turkey modern Istanbul not only retains and produces backwardness in Urfa, but

Plagiarism

According to Acar, Voyvoda and Yeldan (2018), **modern and formal centers of growth** breed **fragmented informal bases. Modern Istanbul** leads to **backwardness in Urfah.** It is also responsible for **generating further Urbas.**

Why is this plagiarism?

The text is directly using Acar et al.'s (2018) words in the way they have used them, without properly quoting the words with quotation marks. It only substitutes the original verbs with different ones.

Proper paraphrasing

Acar et al. (2018: 3) argue that modern formal production centers breed more traditional informal production centers around them. They give an example of a modern formal production center, Istanbul. They argue that Istanbul itself, is responsible for producing traditional informal production centers all around the country.

Why is this paraphrasing acceptable?

This text tries to do justice to Acar et al.'s ideas without any direct copying of their original words or structure. The text retains the main message by keeping some of the key technical terms (“formal centers”) and an example (“Istanbul”).

Original Text

“Embryonic stem cells can self-renew and differentiate, holding great promise for regenerative medicine. They also employ multiple mechanisms to preserve the integrity of their genomes. Nucleotide excision repair, a versatile repair mechanism, removes bulky DNA adducts from the genome. However, the dynamics of the capacity of nucleotide excision repair during stem cell differentiation remain unclear. Here, using immunoslot blot assay, we measured repair rates of UV-induced DNA damage during differentiation of human embryonic carcinoma (NTERA-2) cells into neurons and muscle cells. Our results revealed that the capacity of nucleotide excision repair increases as cell differentiation progresses.” (Li W, Liu W, Kakoki A, Wang R, Adebali O, Jiang Y, Sancar A. Nucleotide excision repair capacity increases during differentiation of human embryonic carcinoma cells into neurons and muscle cells. J Biol Chem. 2019 Apr 12 294(15): 5914-5922)

Plagiarism

Embryonic stem cells have the ability to renew themselves and differentiate holding potential for medical applications. In addition, they have multiple mechanisms to preserve their genomes. A versatile repair mechanism called nucleotide excision repair removes DNA adducts from genomic material. It is still unclear how nucleotide excision repair during stem cell differentiation works. Aziz Sancar and colleagues use immunoslot blot assay and measure the rate of UV-caused damage to DNA during human embryonic carcinoma cells differentiation into neurons and muscle cells. Their efforts show that nucleotide excision repair capacity goes up as the cell progresses through its differentiation.
Proper paraphrasing
Recent work conducted at Aziz Sancar’s laboratory (2019) focuses on a specific DNA repair mechanism called nucleotide excision repair. Embryonic stem cells have the ability to divide and turn into various cell types on demand. During these processes, embryonic stem cells rely on genomic repair mechanisms, such as nucleotide excision repair. This mechanism gets rid of carcinogen bound DNA fragments in embryonic stem cells and represents a major research area for medical native tissue and organ restoration. Sancar’s group investigates dynamics of this DNA repair mechanism in an experimental set-up where they initiate genomic damage by exposing cells to ultraviolet light. They observe elevated DNA repair response during cell type switch from a human embryonic cancer cell line, called NTERA-2, to terminally differentiated neuronal and muscular cells.

Original text
“The algorithm tries to determine optimal location and orientation of individual clusters intrinsically within a modified spring embedder. Heuristics such as reversal of the order of nodes in a cluster and swap of neighboring node pairs in the same cluster are employed intermittently to further relax the spring embedder system, resulting in reduced inter-cluster edge crossings.” (U. Dogrusoz, M.E. Belviranli, and A. Dilek, "CISE: A Circular Spring Embedder Layout Algorithm", IEEE Transactions on Visualization and Computer Graphics, 19(6), pp. 953-66, 2013, page 953)

Plagiarism
The algorithm by Dogrusoz et al. (2013) determines optimal positions and orientation of individual clusters intrinsically using a force directed model. They use heuristics such as reversal of the order of nodes in a cluster and swap neighboring node pairs in the same cluster.

Proper paraphrasing
The algorithm by Dogrusoz et al. (2013) uses a force directed model to find optimal location and orientation for each cluster. In addition, they flip nodes of a cluster or swap ordering of adjacent nodes on a cluster to reduce crossings between inter-cluster edges, resulting in a more stable physical model.

Original Text
“A private agreement to create a right of hypothec merely creates a promise to create a right of hypothec on a thing on behalf of the debtor. If the latter does not comply with his promise, the creditor will not be entitled to enforce the person who made the promise to sign the notarial deed.” (Sagaert, V. (2012). “Security Interests”, in Van Erp, S. and Akkermans, B. (ed.) Cases, Materials and Text on Property Law, Oxford: Hart Publishing, p. 538.)

Plagiarism
A private agreement to establish a hypothec merely constitutes a promise to create a right of hypothec. If the debtor does not comply with his promise, the creditor is not entitled to enforce him/her to sign the notarial deed (Sagaert 2012, p. 538.).
Proper Paraphrasing
Sagaert (2012) states that the security granted by a private agreement to create a right of hypothec is minimal since the promisee does not have the right to force the promisor to sign the notarial deed in case of non-compliance with the agreement.

2.2 Examples of quoting
The following are examples from various disciplines on how to properly quote the work of others as well as the failure to do so, which constitutes plagiarism.

Original text
“This Article views robots or robotic machines broadly as tools or machines in terms of five characteristics: (1) size; (2) mobility; (3) connectivity, in the sense that the machine can receive and transmit information; (4) “autonomy” to respond to outside input by independently engaging in physical motions; and (5) “intelligence,” which refers to the rate at which the machine can receive, evaluate, use, and transmit information, and the extent, if any, to which it can learn from experience and use this learning in determining future responses.” (F. Patrick Hubbard, “Sophisticated Robots” Balancing Liability, Regulation, and Innovation, 66 Fla. L. Rev. 1803, 2015, page 1807.)

Plagiarism
Intelligence can be described as the rate at which the machine can receive, evaluate, use, and transmit information, and the extent, if any, to which it can learn from experience and use this learning in determining future responses (Hubbard, 2015).

Why is this plagiarism
Although the text provides the source, it is directly using Hubbard’s (2015) words without putting quotation marks around them. The absence of quotation marks leaves the impression that these words are the writer’s own words rather than Hubbard’s.

Proper quoting
Hubbard (2015) described intelligence as “the rate at which the machine can receive, evaluate, use, and transmit information, and the extent, if any, to which it can learn from experience and use this learning in determining future responses.”

Why is this quoting acceptable
The author introduces the quotation in his/her own words, names the source, and then places the original text in quotation marks.

Original text
“I suggest that the uprisings need not have come across as unanticipated had we integrated insights from studies on Arab politics into security theorizing.” (Bilgin, P. (2017) “Inquiring into Others’ Conceptions of the International and Security”, PS: Political Science and Politics, 50 (3): 652-655, page 653)
Plagiarism

Arab uprisings need not have come across as unanticipated had we integrated insights from studies on Arab politics into security theorizing (Bilgin, 2017).

Proper quoting

In drawing our attention to how scholars fail to learn from one another, Bilgin argues that security studies would have successfully predicted Arab uprisings “had we integrated insights from studies on Arab politics into security theorizing” (Bilgin, 2017: 653).

2.3 Examples of summarizing

Below are examples of summarizing. Notice that summarizing and paraphrasing are somewhat different. Whereas a paraphrase is typically of similar length as the original source, a summary is much shorter.

Original text

“Uveitis is an ophthalmic disorder that causes vision loss in developed countries (22, 23) and is characterized by acute, recurrent, or persistent ocular inflammation, the breakdown of the blood-ocular barrier, and infiltration of leukocytes (24). The underlying causes of uveitis can vary. For example, acute anterior uveitis is often associated with (i) Behcet disease, (ii) Reiter syndrome, and (iii) ankylosing spondylitis, as well as other systemic inflammatory diseases (25). Endotoxin-induced uveitis (EIU) is an established animal model of acute ocular inflammation. It is triggered by the administration of LPS, which is a component of the Gram-negative bacterial outer membrane (26). A ligand for TLR4, LPS enhances the expression of various proinflammatory cytokines and chemokines such as IL-6 (27, 28), TNFα (29), and MCP1 (monocyte chemoattractant protein 1) (30) and the production of nitric oxide. All of these mediators contribute to the breakdown of the blood-ocular barrier and infiltration of leukocytes, resulting in the development of EIU (26). It has been shown that suppressing proinflammatory cytokines, including IL-6, TNFα, MCP1, and inducible nitric-oxide synthase (iNOS), retards if not prevents the development of EIU (31). Conventional drugs used to control these concerted inflammatory activation are mainly immunosuppressive in character and are associated with undesirable systemic side effects (24). It is of the utmost importance to develop effective, less toxic agents that selectively block proinflammatory immune activation while eliminating the unwanted systemic side effects.” (Yagci FC, Aslan O, Gurses M, Tincer G, Ozdamar Y, Karatepe K, Akcali KC, Gurses I., Mammalian telomeric DNA suppresses endotoxin-induced uveitis, J Biol Chem. 2010 Sep 10; 285(37): 28806-28811)

Plagiarism

Uveitis is an eye disorder that can lead to loss of vision and is defined by rapid, repetitive and long-lasting inflammation that involves breakdown of the blood-ocular barrier, and infiltration of leukocytes (Yagci et al., 2010). An established animal model of acute ocular inflammation, called endotoxin-induced uveitis, is triggered by LPS administration, which increases expression of various proinflammatory cytokines and chemokines such as IL-6 (27, 28), TNFα (29), and MCP1 (monocyte chemoattractant protein 1) (Yagci et al., 2010). Since conventional drugs used to control inflammatory responses have side effects and immunosuppressive, it is important to create effective and less toxic drugs without unwanted systemic side effects (Yagci et al., 2010).
Proper summary
A cell membrane component made by bacteria, called LPS, can initiate inflammatory reaction during eye infection that can cause blindness for which medical treatment options remain insufficient and require development of better drugs (Yagci et al., 2010).

Original text
“Small cell lung cancer (SCLC) is a highly aggressive form of lung cancer that accounts for approximately 20% of all cases of lung cancer (1). Although initially responsive to chemotherapy, SCLC is almost invariably fatal. SCLC is a carcinoma of neuroendocrine origin, in contrast to non-SCLC (NSCLC), which is of bronchial epithelial origin. Dense-core neurosecretory granules and other neuroendocrine markers are characteristic features of SCLC (2, 3). Some of these markers, including synaptophysin, chromogranin A, and neuron-specific enolase, are expressed normally by neuroendocrine cells throughout development (4). In contrast, other SCLC gene products have been detected only in the embryonic nervous tissue and have not been found in normal adult tissues. The restricted expression of human acheate-scute homologue (hASH) is one such example. hASH1 has been shown to be essential for the development of neuroendocrine cells in the lung and for the maintenance of the neuroendocrine features of SCLC (5, 6).” (Güre AO, Stockert E, Scanlan MJ, Keresztes RS, Jäger D, Altorki NK, Old LJ, Chen YT, Serological identification of embryonic neural proteins as highly immunogenic tumor antigens in small cell lung cancer, Proc Natl Acad Sci U S A. 2000 Apr 11; 97(8): 4198-4203)

Plagiarism
Small cell lung cancer (SCLC) is a very aggressive form of lung cancer of carcinoma of neuroendocrine origin, almost all the time fatal, and has dense-core neurosecretory granules and neuroendocrine markers. Some of these markers are synaptophysin, chromogranin A, and neuron-specific enolase, which are normally expressed by neuroendocrine cells during development (Güre et al., 2000). On the other hand, other SCLC gene products, such as human acheate-scute homologue (hASH) which is essential for lung neuroendocrine cell and SCLC development, have only been detected in the embryonic nervous tissue but not found in normal adult tissues (Güre et al., 2000).

Proper summary
Small cell lung cancer is a neuroendocrine type of lung cancer that shares both adult and embryonic cell gene expression characteristics (Güre et al., 2000).

3. Acknowledgements
The Committee would like to thank Ms. Ayşe Selçuk Gençer for her critical review of this report.

4. References
[1] Policy on Conflicts of Interest and Commitment & Academic Integrity, Bilkent University, last accessed on April 10, 2010.